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SUMMARY

The methods of the calculus of variations are used to find functions of
time for the thrust magnitude and direction that minimize the propellant con-
sumption for a given interplanetary transfer. The flight is assumed to be
planar and to take place in an Inverse-square gravitatiocnal field. Propul-
sion is provided by a fixed thrust and specific impulse engine that can be
turned on and off at will. With such an engine, the determination of the
thrust-magnitude function reduces to finding the best points at which to begin
and end a coast phase.

Numerical results are presented for one-way trips from Earth to Mars and
from Mars to Earth (both assumed in coplanar, circular orbits) for three

values of initial acceleration (0.5X10'4, leO'4, and 5x10~% Earth standard
g's) and five values of specific impulse (2000, 4000, 6000, 8000, and 10,000
sec). For these engine parameters, the trip time is varied between the
continuous-propulsion time and the optimum time, which is analogous to the
two-impulse, Hohmann transfer for impulsive thrust. These results are com-
pared with the constant-jet-power, variable-thrust engine for the case of
transfers to the best point on the Martian ellipse.

Although the variational solution for round trips is not considered, the
one-way trip data of the type presented may be used to calculate equivalent
results. A sample calculation is given to illustrate the procedure.

INTRODUCTION

The long propulsion periods assoclated with low-acceleration flight give
rise to the problem of determining appropriate functions of time for engine
thrust magnitude and direction in order to minimize the propellant consumed
in accomplishing a given mission. As shown in references 1 to 4, such func-
tions can be found by use of the indirect methods of the calculus of varia-
tions. In formulating such a problem it is necessary to introduce constraints



on the engine thrust and specific impulse consistent with the assumed mode of
engine operation. Otherwise, as shown in reference 1, the variational solu-
tion will yield infinite thrust and specific impulse. The purpose of this
report is to present a variational solution with constraints specifically
designed for early ion engines. This solution is then used to determine
optimum trajectories for both the outbound and inbound heliocentric portions
of low-thrust Mars missions. The resulting variational solution can also be
applied to many other trajectory problems or to flight with chemical- and
nuclear-rocket engines operating under similar contraints.

In references 2 and 5 the thrust and specific impulse for ion engines were
limited by constraining engine operation to constant peam power; the result-
ing solution required large varlations in thrust and specific Impulse along
the path. Early ion engines probably will be capable of operating efficiently
over only limited ranges of thrust and specific impulse. Thus, although the
variable-thrust trajectories of references 2 and S represent an upper bound
on the capabilities of future ion engines, they are not applicable to early
ion engines. The contraints assumed in the present analysis are that engine
thrust and specific impulse (and, hence, beam power) are constant. Since it
is assumed that the engines are capable of shutdown and restart, the tra-
Jjectories may have coast phases. This problem iIs treated in reference 3 for
the case of a constant planar gravitational field. Reference 5 presents a
more comprehensive solution that includes a spherical inverse-square gravita-
tional field and covers both the constant-thrust and variable-thrust cases.
The solution of the present report is specifically for the constant-thrust —— -
cgse in a two-dimensional inverse-square gravitational field and contailns
more detailed and extensive information about this case than has been pre-
sented elsewhere. Emphasis is placed herein on a discussion of the nature of
the optimizations and the effect of initial thrust-to-welight ratio and spe-
cific impulse. Furthermore, typical results are given to illustrate the
analysis of round-trip missions.

The variational analysis results in a set of Euler-lagrange differential
equations that yield the optimum thrust direction and indicate the best times
for initiating and terminating the coast phase. Numerical results were ob-
tained by simultaneous numerical integration of the Euler-Lagrange equations
with the equations of motion on an IBM 704 digital computer. As shown in
reference 4, all the differential equations can be analytically integrated
during the coast phase. The analytical solutions to the Euler-Lagrange
equations for the present problem are presented in appendix B. The details
of all numerical techniques employed here are given in reference 6.

Sufficient numerical data are presented to indicate the nature of constant-
thrust trajectories and to allow computation of some specific one-way and round-
trip missions. Charts are presented for both Earth-Mars and Mars-Earth trans-
fers that use an optimum travel angle. The data are presented as a Tfunction of



travel time and specific impulse for thrust-to-weight ratios of O.5XlO'4, lxlO’4,

and 5XlO'4. The constant-thrust transfers are briefly compared with the
variable-thrust transfers presented in reference 2.

For round-trip missions, nonoptimum travel angles will generally be re-
quired to meet planetary configurations. Thus, data for a wide range of
travel angles are presented for a few representative values of thrust-to-
weight ratio and specific impulse. These data are then used to 1lllustrate a
round-trip calculation.

ANATYSTS

The problem to be solved 1s to determine the vehicle thrust program and
hence the trajectory that minimizes the amount of propellant consumed In ac-
complishing a given mission. The engine is assumed to operate at constant
thrust and specific impulse during powered flight, but it can be turned off
for coast flight. For simplicity the vehicle is assumed to move in a two-
dimensional trajectory in a central inverse-square gravitational fileld.

The vehicle trajectory must satisfy the following equations of motion:

. VB
u= - i% + ofr + =& sin ¥ (1a)
T m
2 V3B
o= - w | J” cos 1) (1b)
r m r
r=u (1c)
¢ =ow (14)
where
m= -B (1e)
(A1l symbols are defined in appendix A.) In order to satisfy the engine con-
straints, the exhaust velocity Vj is treated as a constant throughout the
flight, and the propellant ilow rate S 1is given by
B =Bges = const for powered flight
(2)
=20 for coast flight



The variational problem to be solved is to determine ¥ and B as func-
tions of time, subject to the constraints given by equations (1) and (2), so that
the amount of propellant consumed in accomplishing a given mission is minimized.
This problem is a special case of the problem of Bolza as formulsted in refer-
ence 7 and is known in the calculus of variations as the problem of Mayer. The
Multiplier Rule and associlated corollaries developed in reference 7 will be used
to solve this problem. In the problem of Mayer a function g of the initial
and final conditions is minimized. To minimize the propellant consumption (or
equivalently, the negative of final mass), g 1is given by

g = -mf (3)

The constraints given by equations (1) and (2) are introduced through the func-
tion F defined by

6
i=1
where
ViB
=' L_ 2 _—-—J j =
f1=u+ 2 ocr ” sin v =0 (5a)
: VP
fp = rd + 2up - —=— cos ¥ = 0 (5b)
fz =1 - u=20 (sc)
f4 =0 -0=0 (54d)
fo=m+B=0 (5e)
and the Ay (where 1 =1, 2, . . . , 6) are the Lagrangian multipliers, which

are unknown functions of time to be determined as part of the variational so-
lution.

Equations (5a) to (5d4) are the equations of motion (egs. (1a) to (le)).
Equation (5e) is the differential equation for the vehicle mass. Equation (5f)
states the constraints on the propellant flow rate B given by equation (2);
namely, that the propellant flow rate must be zero or the design value. At this



point it is convenient to introduce the following notation for the dependent
variables of the problem:

Zl(t) =u Z5(t) =m
Zp(t) = Zg(t) = ¥
7.(t) = T Z;(t) = B
Zy(t) =0

Buler-Lagrange Equations
As developed in reference 7, a necessary condition for g to be a minimum

is that the Euler-Lagrange equation with respect to each dependent variable be
satisfied. The Fuler-Lagrange equations are given by

a f[oF OF .
55(5—2:):571 $=1, 2, « o .y 7 (6)

Applying equation (8) to equation (4) results in the Euler-Lagrange equations
for the present problem:

7'\]_ = 2whp - Az (7a)
Ap = -Bwhy + L JMe (7p)
r - r
;\3 = -<—§% + CD2> 7\1 + (1)7\2 (7C)
Ay =0 (74)
VJB
Ag = & (AL sin ¥ + Ap cos V) (7e)
VJB

(A cos ¥ - Ap sin V) —== 0 (7¢)

V.
]% (A sin ¥ + Ap cos V) - As

2B - PBges (7e)

Ag =

The differential equations (7a) to (7e) must be integrated along with the equa-
tions of motion (egs. (la) to (le)) to determine the optimum trajectory. Equa-
tion (7g) serves only to define XG and has no further significance in the



present problem. Equation (7f) gives the value of the thrust angle along the
optimum trajectory during powered flight (The value of the thrust angle 1s not
required during coast flight). From equation (7f):

M
tan ¥ = v for B = Bges (8)
or
A
sin ¥ = — L (9a)
J_r‘/' A8 + A%
Az
cos ¥ = (9b)

i'VA% + K%

The uncertainty in the signs of egquations (9a) and (9b) corresponds to an un-
certainty of = 1in the value of the thrust angle V¥ (i.e., ¥ or V¥ + n). The
choice of sign for equations (9a) and (9b) is developed later in the section
Necessary Condition of Weierstrass. Integrating equation (7d) gives

Ay = const 7 (10)

Another integral of the Euler-Lagrange equations can be obtained, since
the function F does not contain the independent variable, time, explicitly.

From reference 7,
! t
f
> OF oF
F - Z; = = dt +C (11)
YA 3t
0

i=1

In the present case, where the function F does not contalin time explicitly,
this reduces to

7
F - Z; éF— = C (12)
0Z4
i=1
or from equations (4) to (5f)
VB V.p
(ﬁ% - Pr - —%— sin W)7ﬁ>+ (2uw - —%— cos W) %2 - u%s - aﬁ4 + BKS =C

(13)



Equation (13) can be used to determine the value of one of the Lagrangian
multipliers. In the present case it is convenient to determine K5 from equa-

tion (13) and eliminate the need for integrating equation (7e). Thus,

VB VP
C - (ﬁ% - afr - —ﬁr-sin W) S (Zum - —ﬁr cos W) Ap + uhz + why
Ae = ,
B
for B # O (14)

To evaluate KS for B = 0, it should be noted from equation (7e) that in this

case Ag = 0. Thus, A5 1is a constant during coast. Specifically, A5 is equal
to its value at the termination of the previous propulsive phase of the trajec-
tory. The continuity of %5 at the point of transition from powered flight to
coast is established by applying the Weierstrass-Erdmann Corner Condition

(ref. 7). This condition states that the BF/SZi must have equal right- and
left-hand limits at such corners. For the present problem

%b-:=7\1 a—]’-ﬂ=?\5
1 m

OF _ OF _
&),———I'?\z a‘j[—o
3F _ F _
-3—5_7\3 a‘.3_0
BF_M

Therefore, at a corner such as the transition from powered rlight to coast (and
vice versa), the Lagrangian multipliers Al to Ag have equal right- and left-

hand limits. This implies that the constant of integration C 1s also continu-
ous at the corners.

Necessary Condition of Weierstrass

Two uncertainties still remain in the system of Euler-Lagrange equations.
The first is the choice of signs in equations (9a) and (9b), and the second is
the value of B (i.e., B = Bgeg OF 0) along the path. Both of these uncer-

tainties are resolved by applying the Necessary Condition of Weierstrass
(ref. 7). Following the development in reference 3, this condition states that
for a minimizing trajectory E > O where



E = F(Zg, Zi) - F(Zi; 21) - (Zi - Zi) -aF— >0 (15)
=1

The Z4i's are the actual minimizing functions, and the Z;'s denote functions
differing from the Zi's by finite, admissible amounts. TIn the present problem

only ¥ and B are subject to such strong variations. Equation (15) may then
be written as

V. V.
B[;% (A{ sin ¥ + Ao cos V) - AS] - B*[E% (A sin ¥* + As cos ¥¥) - RSJ >0

(16)
In the notation of reference 3, let
k = gg (A{ sin ¥ + Ao cos V) - Ag (17a)
k* =»¥§ (A1 sin ¥* + Ap cos ¥*) - Ag (170) =
Then
Bk - p*k* 2 O (18)
Inequality (18) is now examined for the admissible variations in ¥ and B.
B = PB* = Byegs ¥V # V¥. - In this case inequality (18) reduces to
k - k¥ >0 (19)
or
Ay sin ¥ + A, cos ¥ > Ay sin V¥ + A, cos y* (20)
Since, for any value of V¥, ¥* can only equal V¥ + =,
A sin ¥ + Ay cos ¥ >0 (21)

Substituting equations (9a) and (9b) in inequality (21) results in

+ Y2+ >0 (22)

Therefore, the plus sign is used in equations (9a) and (9Db).



k = k*, B # B*¥. - In this case inequality (18) reduces to

k(B - p*) >0 (23)

When k 1is negative, B must be less than p* and thus B 1s zero. Simi-
larly, when k 1s positive, B must be greater than p* and thus J equals
Bges. In summary,

v

B = Bges for k >0 (o)

B =0 for k<0

The sign of k then determines the powered and coast phases of the flight, and
the transition from one phase to another occurs at k = O.

The variational equations developed thus far are independent of the func-
tion g; this is characteristic of the problem of Mayer, in which g 1s only a
function of the initial and final conditions. The specific nature of g 1in-
fluences only the boundary conditions that must be satisfied in integrating the
equations of motion and the Euler-Lagrange equations.

Boundary Conditions

If some of the Zi

the free boundary values should be selected to minimize g. The boundary con-
ditiong that must be satisfied for the minimizing trajectory are given by the
transversality condition (ref. 7). This condition states that for a minimizing
trajectory

's are not specified at either end of the trajectory,

7 7 £

F-Eéigg—i dt+§%—§—i—dzi +dg =0 (25)

i=1 i=1 0

Il

By use of equations (4), (5a) to (5f), and (12), equation (25) becomes

Cdt+7\ldu+r7\2dm+7\3dr+7\4d(p+7\5dm|§+dg=0 (286)

Turther evaluation of the boundary conditions to be satisfied requires applica-
tion of equation (26) to a specific problem. In this analysis the problem of
minimizing the propellant consumed in transferring between circular, coplanar
orbits is examined. (The problem of transfer between elliptic orbits is
discussed in appendix C). For this case g 1s given by equation (3), and the
following initial and final boundary conditions are known:



Initial Final

x
mo re
_ / 3
o ®f = YH/ Ty
uw = u/rg up = 0 f
27
o= 0 (27)
Py = O
to=0 y

The final time ty and angle @y may be specified or left free for further

optimization of the final mass. As a consequence of the aforementioned boundary
conditions (egs. (27)),

dmy = drg = dwg = dug = d9g = dtg = dre = dwp = dup = O (28)
and equation (26) reduces to
Cate + Ay A9 + (A5 ¢ - 1) dmp = 0 (29)

where the variatlons dty, d9p, and dmpe are independent. If te, @p, and mp

are not specified, their variations in equation (29) are nonzero and their re-
spective coefficlents must be zero.

Since my 1s the quantity subject to optimization, it is not specified
and dme # O. Thus, equation (29) gives as one boundary condition to be

satisfied:

Ag p=1 (30)
If the position in the final circular orbit is not specified d9¢ £ 0, and
equation (29) gives

A =0 (31)

Thus, a circular-orbit transfer with A, = O yields the trajectory possessing

the optimum travel angle. If the final time is not specified dte % 0, and
equation (29) also gives

C=0 (32)

Thus, a circular-orbit transfer with C = 0 yields the trajectory having the
optimum travel time.

10



Calculation Procedure and Two-Point
Boundary Value Problem

The equations required for the determination of the minimizing trajectory
are summarized for convenience in appendix D. The equations of motion (eqs. (la)
to (1e)) and the Euler-Lagrange equations (egs. (7a) to (7¢)) must be integrated
simultaneously to determine the minimizing trajectory. The value of the thrust
angle 1s glven by equations (9a) and (9b), and the powered and coast phases are
indicated by equation (24). These equations were programed for an IBM 704 com-
puter and integrated numerically with a Runge-Kutta technigue by use of a step-
size control to limit the truncation error.

For the problem of transferring between circular orbits the known initial
conditions were given by equations (27). 1In order to proceed with the trajectory
integration, values for the %i(O) must also be chosen. The values for the

Ki(O) must be selected to satisfy the desired final conditions glven by equa-

tions (27) and those obtained from the transversality condition (eq. (29)): this
results in what is commonly known as a two-point boundary value problem.
Specifically,

Unknown initial Desired final
conditions conditions
\
A (0) r(te)
A3(0) o(te) = Va/r3
> (33)
Ay = const @(tf)
C te
?\S,f = 1-0 J

where for convenience C 1s selected as an initial condition to be determined
rather than AS'

To simplify the set of conditions (33), first note that the Euler-lagrange
equations (egs. (7a) to (7g)) are homogeneous in A;. This means that the so-

lution is independent of the initial magnitude of one of the Ay's, which can be
considered to act as only a scale factor for the other %i's. In the present

case, 73(0) was selected as the scale factor, and its initial magnitude was
taken as unity. After a solution is obtained, the requirement k5,f = 1 can

11



then be satisfied by merely adjusting the scale factor Az(0). Thus X3(0)
and Ag p = 1 can be removed from the iteration.
bl

A further simplification was made in the present analysis by not specifying
¢p; hence, K4 was removed from the iteration. The solutions for optimum Qg

were obtained with XQ = 0, and the solution for nonoptimum @p were obtained by

covering a range in Ay. Finally, the desired ty 1s obtained by terminating
the trajectory integration at + = ty. The set of boundary conditions (33) then
becomes the following:

Unknown initial Desired final
conditions conditions
7\1(0) l"(tf) =TIy
A>(0) u(te) =0 (34)
C w(tf\ = ‘/ 3
/ H/rf

Obtaining a solution, then, reguires that the values of three initial conditions
be determined such that the three specified final conditions are satisfied. This
problem was solved by use of a three-variable Newton-Raphson iteration scheme
wherein the various required partial derilvatives were evaluated by finite-
difference methods. The iterations were terminated when residual errors in the
end conditions were such that their removal would cost no more than a specified
amount of propellant. The iteration scheme, as well as the criterion for termi-
nating the iteration, 1s discussed in reference 6.

RESULTS AND DISCUSSION

The variational solution developed in the ANALYSIS has been used to investi-
gate the heliocentric phases of Barth-Mars and Mars-Earth low-thrust transfer
trajectories. In meking preliminary analyses of low-thrust interplanetary
missions, it is convenient to assume a series of two-body trajectories rather
than treating the precise multibody problem (ref. 8). For example, for the
Earth-Mars mlssion, the Earth escape spiral can be computed from consideration
of Barth's gravitational field only. When the vehicle has traveled a sufficient
dlstance from the Earth, the coordinates can be transferred to the sun; and
during heliccentric flight, only the solar gravitational field can be consldered.
Again, when the vehicle has approached sufficilently close to Mars, the coordi-
nates can be transferred to Mars; and durlng the descent spiral, only the Martian
gravitational field is considered.

The variational solution developed in the ANATYSIS can be applied to all
three phases of such a journey. Only the heliocentric portion, however, has
been investigated herein. Data for the Earth escape and Mars descent spirals
can be obtained from the charts of reference 8, which are based on a constant-
tangential-thrust steering program. For constant-thrust spirals, this steering
program has been shown to give near optimum results (ref. 2).

12



Boundary Conditions

The boundary conditions lmposed on the heliocentric trajectories presented
in this report are based on transfer from geocentric to heliocentric coordlnates
when the vehicle has achieved escape energy with respect to the Earth and trans-
fer from heliocentric to Martian coordinates when the vehicle is at escape energy
with respect to Mars. Thus, the heliocentric trajectories begin with the vehicle
in Earth's orbit about the sun and terminate with the vehicle in Mars' orbit
about the sun. For simplicity, Earth and Mars are assumed to move in circular,
coplanar orbits about the sun. Assuming a circular orbit for Mars can lead to
significant errors in some cases. An elliptic orbit for Mars is treated in
appendix C. The values in the following table were used for the orbits of Earth
and Mars:

Planet Radius, Polar angular

r, velocity,
m w,
radians/sec

Earth | 1.4950x10M1 | 1.9910%10~7

Mars 2.2779x1011 | 1.0586x10"7

These values are based on a solar gravitational constant p = 1.3245%1020

ms/secz. The boundary conditions are satisfied to the extent that the residual
errors result in an error in final mass of less than 0.1 percent of mp.

Barth-Mars Transfers

The transfer trajectories Investigated herein are limited to direct trans-
fers making less than 1 revolution about the sun. The resulting flights, in
general, have either continuous propulsion or two propulsive phases with an
intermediate coast phase. To indlcate the nature of these transfers, the Earth-
Mars transfers will be examined in detail for one set of engine parameters.
Similar results would be obtained for Mars-Earth transfers. The reference set
of engine parameters selected is an initial thrust-to-weight ratio of 1x10-% and
a specific impulse of 8000 seconds. Later, data for both Earth-Mars and Mars-
Earth transfers for a range of engine parameters are presented.

Effect of travel time. - The effect of travel time on Earth-Mars transfer
trajectories for the reference engine parameters is illustrated graphically in
figure 1(a). The flights shown have an optimum travel angle (corresponding to
Ay = 0). The quickest transfer, 181.6 days, is obtained with continuous pro-

pulsion. As travel time is increased, the length of the coast phase increases;
and at approximately 290 days, the trip having the optimum travel time (corre-
sponding to C = 0) is obtained. This journey is analogous to the Hohmann
transfer for impulsive thrust and has the longest intermediate coast phase.

13



Power on Travel time,
t

————— Power off £

days

~290 (C = 0)

Mars® orbit-
Ay

Farth's
orbit o
A

\

~181.6 (Continuous
propulsion)

(&) Trajectory profiles.

Figure 1. - Effect of travel time on Earth-Mars transfers. Initial thrust-to-weight
ratio, lx10_4,- engine specific impulse, 8000 seconds; Lagranglan multiplier 7\,4, 0.

Specification of longer travel times merely results in the optimum transfer with
an additional coast phase either in Earth's orbit before proceeding with the
transfer or in Mars' orbit after completing the transfer. If much longer travel
times (corresponding to transfers making more than 1 revolution about the sun)
are specified, transfers with more than one sequence of propulsion, coast, pro-
pulsion could presumably be obtalned. Transfers with such long travel times
were not investigated in the present analysis.

The variation of the thrust angle along the trajectories presented in
figure 1(a) is shown in figure 1(b). The thrust angle for the C = O transfer
(290 days) is nearly tangential (again analogous to the Hohmann transfer for im-
pulsive thrust). As travel time is decreased, increasingly larger radial com-
ponents of thrust are introduced. The radial components are outward from the
local horizontal for the near Earth phase of the trajectory and inward for the
Mars phase. The thrust angle for the continuous-propulsion transfer is
continuous, and the apparent discontinuity in figure 1(b) is only a result of
presenting the thrust angle from -x to = rather from 0 to 2x. In general,
dW/dt is positive during the propulsion phases of the flight.

The effect of travel time on the final- to initial-mass ratio mf/mo is

shown in figure 1(c) for the transfers with an optimum travel angle. As de-
veloped 1n the ANALYSIS, the hlghest mass ratio is obtained for the transfer
with € = 0. Initially, travel time can be reduced from the optimum with only a
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small decrease in mass ratlo. However, as the travel time approaches that for
the continuous-propulsion case, the mass ratio decreases rapildly.

The variation in the optimum travel angle with travel time is shown in
figure 1(d). The planetary configuration required for an optimum-travel-angle
transfer at a given travel time can be met once each synodic period.

Nonoptimum travel angles, %44f;p. - The transfers presented in figure 1 all
possess an optimum travel angle. At each travel time 1t is also possible to
make transfers with travel angles both larger and smaller than the optimum, at
the expense of increased propellant consumption. Thus, for one-way missions 1t
wlll generally be desirable to use transfers with an optimum travel angle. For
round-trip missicns of specified duration, however, 1t will generally be desira-
ble to use nonoptimum travel angles for both the outbound and inbound segments of
the mission; this is discussed later.

The range of travel angles that can be achieved at a particular travel time
for an Earth-Mars transfer is dlllustrated graphically in figure 2. The flights
shown are those very near the maximum and minimum and the optimum travel angle
for a travel time of 240 days. The limiting cases of maximum and minimum travel
angle require continuous propulsion, and all the intervening travel angles are
obtained with varying lengths of coast phase. The longest travel angle is
achleved by initially moving inside Earth's orbit before moving out to Mars.

The shortest travel angle i1s obtained by moving out beyond the orbit of Mars in
the latter phase of the trajectory and entering from higher radli. This phe-
nomenon camnot be noted clearly because of the limited scale of figure Z.

Mars'
orbit 0

Figure 2. - Comparison of Earth-Mars transfers with optimum and
nonoptimum travel angles. Travel time, 240 days; initial

thrust-to-weight ratio, 1><10‘4,- engine specific impulse,
8000 seconds.
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Figure 3. - Effect of travel angle on final- to initial-mess ratio
for Earth-Mars transfers. Travel time, 240 days; initial thrust-

to-welght ratio, 1x10'4; engine specific impulse, 8000 seconds

The effect of travel angle on mf/mo is presented in figure 3 for the

reference set of engine parameters and a travel time of 240 days. Figure 3
demonstrates the optimlzing nature of Ay = O trajectories. Travel angles

larger than the optimum value are obtained with positive values of Ké, and
travel angles shorter than the optimum are obtained with negative values of Ké.

Performance map for reference engine parameters. - From data similar to
those presented in figure 3 for a range in travel time, a map of possible Earth-
Mars trajectorles can be obtained. Such a performance map is presented in
figure 4 for the reference englne parameters. For convenlence, travel angle 1is
presented as a function of travel time with the final- to initlal-mass ratio as
a parameter. The continuous-propulsion flights form the outer boundary of the
map. Flights inside the boundary have a coast phase, while those outside the
boundary are not achievable with the reference engine parameters. Also, in the
upper right portion of the map the flights have an initial as well as an inter-
mediate coast phase. Similarly, in the lower right portion of the map flights
occur with a final as well as an intermediate coast phase. The double-coast-
phase trajectories are not new trajectorles, but are trajectories obtalned at
shorter travel times and angles extended with an initial or final coast phase.
The boundaries of these multiple coast regions have not been evaluated because
they are characterized by k = O either at the start or end of the transfer,
which is a very sensitive two-point boundary value problem that cannot be
solved accurately without special machine program modifications.
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Figure 4. - Effect of travel tlme on travel angle for various values of final- to Iinltial-mass

ratic for Rarth-Mars ftransfers. Inltial thrust-to-welght ratio, 1XIO‘4; engine specific
impulse, 8000 seconds.

Curves indicating the C =0 and Ag = O trajectories are superimposed on
the map; once again the optimum nature of these trajectories (as given by the
transversality condition in the ANALYSIS) is apparent. The A4 = O curve con-
nects the vertical tangents to the mass-ratio curves; this produces the optimum
travel angle for each travel time. Similarly, the C = 0 curve connecting the
horizontal tangents gives the optimum travel time for each travel angle. The
highest mass ratio, 0.931, is obtained at the intersection of the Ay = O and
and the C =0 curves. This 1s the 290-day transfer described in detail in
figure 1; as mentioned previocusly, longer travel times were not investigated in
the present analysis.

Engine parameters. - The data presented thus far have all been for the
reference set of engine parameters. The effect of thrust-to-weight ratio on
Earth-Mars transfers with optimum travel angles is shown in figure &5 for a
specific impulse of 8000 seconds. For each thrust-te-weight ratio, travel time
is varied from the minimum time (continuous-propulsion flights) to the time
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Figure 5. - Effect of travel time and thrust-to-welght ratio on final- to
initial-mass ratio for Earth-Mars transfers. Englne specific impulse,
8000 seconds; Lagrangian multiplier Mg, O

maximizing the final- to initial-mass ratio (flights with C = 0). The predomi-
nant effect of thrust-to-weight ratio is the widening of the band of achievable
travel times as thrust-to-weight ratio is increased. In particular, achieving
short travel times requires relatively high thrust-to-weight ratios. Also, at
the long travel times, the optimum transfers (G = 0) approach the Hohmann trans-
fer as thrust-to-weight ratio is increased.

The effect of specific impulse on Earth-Mars transfer trajectories is shown
in figure 6(a) for a thrust-to-weight ratio of 0.5X107%. Again, the trajectories
have optimum travel angles, and the travel time is varled from the continuous-
propulsion case to that for a maximum mass ratio. The specific impulse, of
course, has a major effect on the required mass ratio, but a change in specific
impulse has only a minor effect on the trajectory used. For example, a change
in specific impulse has almost no effect on the travel angle required for a
transfer of given duration, as indicated by the nearly vertical constant travel-
angle curves in figure 6(a). A secondary effect of specific impulse is to widen
the range of travel times available as the specific impulse is reduced. This 1is
due to the greater mass expenditure and hence increased average acceleration at
the lower specific impulses and is thus similar to the effect of thrust-to-
weight ratio shown in figure 5.
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Trajectory Charts for One-Way Missions

Figures 6 and 7 summarize the trajectory data that have been obtained for
Earth-Mars transfers. All the data are for transfers with an optimum travel
angle, and the travel time varies from the minimum time for the continuous-
propulsion case to the time for the maximum final- to initial-mass ratio. In
figure 6, the final- to initial-mass ratio is presented as a function of travel

time and specific impulse for thrust-to-weight ratios of 0.5X10"4, leO'4, and

5x107%. In figure 7, the agpportiomment of travel time into initial propulsion
time, coast time, and final propulsion time is presented for the same range of
engine parameters. Figures 8 and 9 present similar data for Mars-Earth tra-
Jectories with optimum transfer angles. Comparison of figures 6 and 7 with
figures 8 and 9 indicates the similarity between Earth-Mars and Mars-Earth tra-
Jectories.

Comparison with Variable-Thrust Trajectories

In order to compare the results of this analysis with the results for the
variable-thrust engine of reference 2, two modifications must be made. The first
concerns finding the optimum I for a glven Jjet power and travel time. The
optimum I can be obtalned as part of the variational solution as shown in ref-
erence 5 or by simply constructing the constant jet power-to-initial mass ratio
P/MO envelope of curves at constant F/Wb and I. The latter method has been

used here and is illustrated in figure 10. The second modification concerns the
boundary conditions. For the comparison, Mars' orbit was assumed to be an el-
lipse, of known eccentricity and semilatus rectun, coplanar to Barth's cilrcular
orbit. Transfers to the Martian ellipse were made with an optimum travel angle
to the best point on the ellipse for the given travel time. The transversality
conditions for these end conditions are developed and discussed in detail in
appendix C.

For comparison, a nominal value of 0.04808 kilowatt per kilogram for P/Mb
(which corresponds to (F/WO)I = 1) was assumed, and F/WO and I were varied

to construct the envelope curve. The resulting propellant fractions are shown
in figure 10, where they are also compared with the variable-thrust engine re-
sults. There is very little difference between the two curves at high values
of tp, but the inherent advantage of the variable-thrust engine becomes more

apparent as the travel time 1s reduced. This difference, at short times, be-
comes about o percent of the initial mass. The significance of these differ-
ences cannot fully be assessed until more i1s known about these engines. The
propellant requirements of both engine types, however, are valuable as a guilde
in design and evaluation.
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Figure 10, - Comparison of fixed-design engine and constant Jet power englne for Earth-Mars

transfers. Jet power-to-initlal mass ratloc, 0.04808 kilowatt per kilogram; (F/WO)I = 1.

Round-Trip Calculations

As pointed out previously, this report does not contain sufficient data for

a comprehensive study of round-trip, FEarth-Mars missions. A limited amount of
nonoptimum-travel-angle data has been computed, however, and will be used to
help illustrate a method for computing round trips that uses performance charts
of the type shown in figure 4. In the calculation of round trips of glven du-
ration and waiting time, the travel time and travel angle for the outbound
transfer may be selected at will. Once this has been done, however, the same
variables for the inbound transfer must satisfy the rendezvous equations

tm o= by = tout * tin

tyom = Hom = Pout + Pin

(35)
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T round-trip mission time
Yo walting time

tout  outbound travel time

tin inbound travel time

O Earth's angular velocity
Wy Mars' angular velocity
Pout outbound travel angle
Pip inbound travel angle

In view of the rendezvous egquations it can be seen that optimum-travel-angle
transfers can be used only for special combinations of t, and t,. To opti-

mize the round trip, for specified t, and t, the pair of outbound parameters
(tout’ wout) must be found that maximizes the mass at return to Earth. Such a

problem is, in principle, within the scope of the indirect method of the calculus
of variations. As such, however, it is beyond the scope of this report.

To zo0lve this same problem by use of performance maps such as the one pre-
sented in figure 4, a selection is first made of F/WO, I, toue, and  Pgyt-

From an appropriate performance map, the corresponding value of (mf/mo) can
be read. Thus the thrust-to-weight ratio at Mars arrival, (F/WO)(mO/mf), will be

known and can be used with data (such as those found in ref. 8) to find the mass
ratio required to spiral into and out of an orbit about Mars. Thus, the value
of (F/WC). can be computed and can be used together with tin and win as

in

determined from equations (35) to obtain the necessary value of (mf/mo)in from
an appropriate inbound performance map.

In order to minimize the number of performance charts required, the first
choice of (t,9).,+ can be made such that (F/WO)in has a value corresponding to

that for one of the inbound performance maps that is available. Furthermore, it
should be noted from figure 4 that a variety of values for (t,@)out can be se-

lected at the same value of (mf/mo) . Since all such cases will use the same
ou

inbound performance chart, it is possible to find the optimum value of (t,(p)out
for a given value of (mf/mo) & by use of only two performance maps. This
ou

latter procedure is illustrated in figure 11, where all the values of (’c,cp)i_n
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Travel angle, gg, radians
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Earth transfers. 1Initlal thrust-to-welght ratio, 1.25x10'4; engine specific impulse, B000 seconds.

along the dashed curve were computed from equations (35) by use of ty = 950,
= 500, and a series of outbound trips taken from figure 4 at

(mf/mo)out = 0.875. TZe value of (mf/mo)out4= 0.875 has been selected so that,
with (F/wo)Out = 1X107%, (F/wo)in = 1.25x10™%, and I = 8000 seconds (figs. 4

and 11), sufficient propellant was available to spiral into and out of an orbit
about Mars at 1.1 X ry. From figure 11 it can be seen that the best trip of

Ty

this type occurs when the dashed curve becomes tangent to one of the mass-ratio
curves for the inbound trip. The details of the best case from figure 11 are
given in the following table:

a7



Time, Polar Final- to
t, angle, | initial-mass
days @, ratio,
radians mf/mo
Outbound 209 2.580 0.875
Spiral in 36.9 . 337 .954
Park 430.5 | 3.938 1
Spiral out | 32.6 .298 .958
Inbound 241 2.935 .919
Overall 950 10.058 . 735

The case shown in the aforementioned table 1s the best possible for the chosen
values of F/Wy, I, tg, t,, and (mg/my) g In order to find the optimum value
ou

of (mf/mo)out, the basic procedure illustrated by figure 1. . 2 have to be re-

; and each new value would require a differ-

eated T other 1 of
peated for values (mf/mo)out

ent inbound performance map.

One advantage of the method presented here is that it allows the computation
of optimum round trips for many different combinations of t,, and t, without

any change in the number of performance maps required. Should it be necessary to —
investigate many different values of (F/W'o)out and I, however, the number of
charts required could become prohibitive.

CONCLUDING REMARKS

The calculus of variations has been used to derive differential equations

that define planar, two-body, optlmum trajectorles for glven boundary conditions.
In the derivation, it is assumed that the gravitational field is of the inverse-
square type and that the engine operates with fixed thrust and specific impulse
but may be shut down and restarted at will. The resulting equations have been
programed Tor an IBM 704 computer along with a three-variable Newton-Raphson
iteration scheme to overcome the inherent two-point boundary value problem. This
machine program has been successfully applied in an investigation of both Earth-
Mars and Mars-Earth transfer trajectories with a range of values for initial
thrust-to-welght ratio and engine specific impulse.

In order to compare results with those for continuously variable thrust as
presented in reference 2, a special serles of calculations has been made for
transfers to an elliptical Martian orbit from a circular Earth orbit. The final
comparison of these results shows that the two solutions differ very 1little at
long travel times and that the variable-thrust solution has an advantage at short
travel times that amounts to about 5 percent of the initial mass for the case
chosen.
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Most of the data presented have the optimum travel angle at each travel time
and are, therefore, most applicable to the study of one-way transfers. ©Suffi-
cient nonoptimum-travel-angle data have been presented to illustrate a possible
method for computing round-trip trajectories.

Lewls Research Center
National Aeronautics and Space Administration

Cleveland, Ohic, September 4, 1962
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APPENDIX A

SYMBOLS

first integral to Euler-lLagrange equations
Weierstrass excess function

eccentricity

8

;;L 40y

initial thrust-to-weight ratio

constraint equation
function of initial and final conditions to be minimized
engine specific impulse, sec
functional to be minimized by variational methods
constant of integration
transversality functions for elliptic orbits
functlon defining coast phases
function assoclated with analytical solution for coast phases
mass, kg

jet power-to-initial mass ratio, kw/kg
semilatus rectum, m
radius, m
time, days
travel time, days
mission time, days
walt time, days
radial velocity, m/sec

engine exhaust velocity, 9.80665 I, m/sec



Z dummy variable

a argument of pericenter, radians
B propellant flow rate, kg/sec
) true anomaly, radians
A Lagrangian multiplier
U gravitational constant, m3/se02
P polar angle, radlans
Pr travel angle, radians
¥ thrust angle measured from normal to radius, radians
w polar angular velocity, radians/sec
Subscripts:
des design
E Earth
f final (t = tp)
M Mars
m mission
el propellant
w walting
0 t=20
Superscripts:
a/dt
' a/ae
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APPENDIX B

SOLUTION OF EULER-LAGRANGE EQUATIONS DURING COAST

The purpose of this appendix is to derive analytical solutions for the
following system of equations:

AL - 29M\g + Az = O (B1)
. : A
7\2-§A2+2q>7\l+?4=o (B2)
As = - % (¥ + r@hy + Qhy + C) (B3)
P o= r(9)? - & (B4)
-
r¢ = -2r(9) (B5)

which apply during the coast phase. Equations (B4) and (B5) have the well-known

solutions:

(B5)

r = L
1+ e cos (90 - a)

and

rép = y/up (B7)

Changing the independent variable in equations (Bl) and (B2) from t to ¢
leads to

and
' I“ . 7\4
AP = T A+ 2N+ — =0 (B9)

where A] = d\;/do, and so forth. Substitution of equation (B3) into (B8)
results in:

Ar - (200 + TP)Ay - TAy - C - GAg = O
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From equation (BS),

2¢f + 1P =0
Therefore,
LA )\
PSP R N A (B10)
r¢ r$ r

By use of relations (B6) and (B7), equation (BLO) can be integrated to give

2 A
=9& i -i
AN e L sin 6 S . cos 6 + Ky sin 6 (B11)
where
I = ae
- sin20(1 + e cos 6)2
0
6
le]_— e? tan 5)
_ e sin 6 . (1 + Zez)sin 6 6e tan™\; 1+e
1-e2|(1+ecos )2 (- e2)(1 + e cos 6) (l - e2)3/2

- cot © for O0<e<l1

(1 + e cos )%

0 =¢ -a and Kj 1s a constant of integration. In evaluating L, only the
elliptical case has been presented because of its frequent occurrence. Substi-
tuting equation (Bll) into equation (B9) and integrating lead to

2
_ 1 Cp 2 2
Ao = T 7 e cos pez [L(l + e cos 8)° + cot 9] + %4:(8 + cos 6)
5 Kp(1 + e cos 6)@
X sin 6 ‘/E + - - Ky (B12)

where K, 1is a constant of integration. Equations (Bs), (B7), (B1l), (B12),
and (B3) can then be used to determine Az.

Once the Initial values of Ay, Ay, 6, p, and e are known, the constants
Kl and Kz can be evaluated with equations (Bll) and (B12). The problem that
still remains is to solve for the Ay at the second k = O point, the termi-
nation of coast. Since the A; are given as functions of 8, the value of 6
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at k =0 must be determined. Because of the transcendental nature of the
equations, some iterative solution must be used to calculate 6 at the termina-
tion of coast. A method based on finite differences, which converges rapidly to
6 at k = 0, has been successfully applied. The subsequent power phase 1s
numerically integrated by the methods previously discussed.
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APPENDIX C

ELLTPTIC ORBIT BOUNDARY CONDITIONS

Transfers to an elliptic orbit are in principle no different from transfers
to a circular orbit; however, certain parameters may be more convenient to use
than others. In this analysis, the eccentricity, semilatus rectum, and perigee
angle are used to describe the shape, size, and orientation of the ellipse with
respect to the initial circular orbit. The true anamoly is used to identify the
position of the vehicle in the final orbit. It should be noted here that the
orientation of the ellipse gives rise to another degree of freedom - a circle has
no orientation. The transformation of varlables can be made through the use of

the following equations:
u=¢£esin8 )

1Y
w=v—§—(l+ecos 6)2
p> }

r

(c1)

=T +¢e cos @

P =6+ a J

Substitution of the total derivatives of equations (Cl) into the transversality
expression (eq. (26)) gives

2

2
ad = -Mf + 7\5 dm + (g 7\1 + __________2]:‘ (DPCOS & 7\2 - £_cos @ ;OS o 7\5>de

r u 3rw
=Nz - 5= A - 5— Mo ]d
(p 3720 "L T 2p 2) D

tr
uA 2 : rfe sin 6A
1 2r-ew sin 6 3
(tan g~ D 7\2 + _‘—“_—p + 7\4)5.9 + 7\4 doo + C 4t (c2)
to
or, for the case of fixed initial conditlons,
dJ=[(7\5-1)dm+3{de+_(:dp+.lde+7\4d<x+Cdt] =0 (c3)

tr

where X, £, and 4 are coefficlents of de, dp, and df as defined by equa-
tion (C2). As previously discussed, a transfer is optimum with respect to a
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particular variable if its coefficient is zero at the boundary. Consider, for
example, transfers used in the comparison with the variable-thrust engine of
reference 2. Here, each transfer was made with ep, pp, and tp fixed; as pre-

viously discussed, xS,f = 1 was satisfied by scaling. In addition, £ = 0 and
%4 = O were alsoc satisfied. These transfers then have the optimum orientation «

of the Martian ellipse (e,p), and the vehicle arrives at the optimum point on the
final ellipse 6, 1in the given time +tp. Because of the relation among orien-

tation, true anomaly, and travel angle, the optimum orientation also implies op-
timum travel angle for some given 6¢. The two-point boundary value problem for
this case 1s, therefore,

At t o=ty At t = tp 3
A e = gy = 0.093369
(c4)
Ao p = py = 2.2581x1011
c M=0

P

Another type of transfer that can be made is the same as that just described
except that the point of arrival is nonoptimum 6. The optimum point of arrival
M =0 1is included in this class of transfers. This class of transfers also

points out that there are two points on the final ellipse that have M= 0 -
maximum me and minimum mp. Therefore, an additional test should be made to
distinguish the two cases. Also, some polnts on the Martian ellipse are not
achievable with all sets of engine parameters and are defined by the continuous-
propulsion limits of the engine. In this case, the minimum mgy occurs at the
continuous-propulsion poilnts but is not defined by M = 0. These characteristics
of the elliptic orbit boundary are shown in figure 12, where both _#& and mf/mO
are given as functions of 6y for an Earth-Mars transfer with F/WO = 1x10‘4,

I = 10,000 seconds and tp = 200 days.
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Final- to initial-mass ratio, mp/mg

™)
Q
(e

True anomaly, 6¢, radlans

A ! 100
—/’//’//’
. ,
L
/ O
L]
L
o //
- . k”‘,m -100
94 — M = 0, optimum 6p
/—"‘O\.
90 Final- to initial-mass |\ /
ratio forvcircular orbit )
. 88 - \
.86 —— —
. B84 e . o
Continuous-
4o . — 4} propulsicn o) - ——
limits
.82 [ | ] , o
[¢] 40 80 120 160 =« -160 -120 -80 -40 0

Figure 12. - Effect of true anomaly of elliptlc Mars' orbit on final- to initial-mass

ratio for Earth-Mars transfers. Travel time, 200 days; initial thrust-to-weight

ratio, 1x10-4; engine specific impulse, 10,000 seconds; Lagrangian multiplier Mgy O.

Transversality function for

elliptic orbits,
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APPENDIX D

EQUATIONS FOR MINIMIZING TRAJECTORY

The following eqguations are required for the determination of the minimizing
trajectory:

Equations of motlon:

sin V¥ (1a)

= - =+ = (1pb)
r=u (lc)
P =w (14)
where
m= - (1e)
Fuler-Lagrange equations:
A
y u 4
Ag = -2ahy + = N - — (7p)
- 2 2 -
7\5 = - (;‘% + (.D))\l + (D?\z (7C)
where
%4 = const
sin ¥ and cos ¥ are glven by
A A
sin\lf=———l—— cos\l/=—2—-—— (9)

‘/ 2 2 ‘/ 2 2
+ Al + Az + Al + kz
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B 1s given by

B = Bdes for k>0
B=20C for k<0
where
V.
k = ;% (Kl sin ¥ + Ay cos y) - As
and
V. A2
C -(%g - ofr - —%E sin ?)Al - (Zum - —%E cos w)kz + ulz + Wiy

(24)

(17a)

for B # 0

(14)
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